Utility-based Weighted Multicategory Robust Support Vector Machines.
نویسندگان
چکیده
The Support Vector Machines (SVM) has been an important classification technique in both machine learning and statistics communities. The robust SVM is an improved version of the SVM so that the resulting classifier can be less sensitive to outliers. In many practical problems, it may be advantageous to use different weights for different types of misclassification. However, the existing RSVM treats different kinds of misclassification equally. In this paper, we propose the weighted RSVM, as an extension of the standard SVM. We show that surprisingly, the cost-based weights do not work well for weighted extensions of the RSVM. To solve this problem, we propose a novel utility-based weights for the weighted RSVM. Both theoretical and numerical studies are presented to investigate the performance of the proposed weighted multicategory RSVM.
منابع مشابه
Adaptive weighted learning for unbalanced multicategory classification.
In multicategory classification, standard techniques typically treat all classes equally. This treatment can be problematic when the dataset is unbalanced in the sense that certain classes have very small class proportions compared to others. The minority classes may be ignored or discounted during the classification process due to their small proportions. This can be a serious problem if those...
متن کاملA moment inequality for multicategory support vector machines
The success of support vector machines in binary classification relies on the fact that hinge loss utilized in the risk minimization targets the Bayes rule. Recent research explores some extensions of this large margin based method to the multicategory case. We obtain a moment inequality for multicategory support vector machine loss minimizers with fast rate of convergence.
متن کاملOn Multicategory Truncated-Hinge-Loss Support Vector Machines
Abstract. With its elegant margin theory and accurate classification performance, the Support Vector Machine (SVM) has been widely applied in both machine learning and statistics. Despite its success and popularity, it still has some drawbacks in certain situations. In particular, the SVM classifier can be very sensitive to outliers in the training sample. Moreover, the number of support vector...
متن کاملOne-against-all multicategory classification via discrete support vector machines
Discrete support vector machines (DSVM), recently proposed in [l01 and [ l l ] for binary classification problems, have been shown to outperform other competing approaches on well-known benchmark datasets. Here we address their extension to multicategory classification, by developing a one-against-all framework in which a set of binary discrimination problems are solved by means of DSVM. Comput...
متن کاملAngle-based Multicategory Distance-weighted SVM
Classification is an important supervised learning technique with numerous applications. We develop an angle-based multicategory distance-weighted support vector machine (MDWSVM) classification method that is motivated from the binary distance-weighted support vector machine (DWSVM) classification method. The new method has the merits of both support vector machine (SVM) and distance-weighted d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and its interface
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2010